

YTELSESERKLÆRING Nr: 18-HY [NO]

Varetypens unike identifikasjonskode: Ankermasse ESSVE HY (Chemical anchor ESSVE HY)

Produsent: **ESSVE Produkter AB** BOX 7091 164 07 Kista Sweden

info@essve.se

Europeisk teknisk bedømmelse (ETA)	Tilsiktet bruksområde	Artikkelnummer
ETA-18/0614 (2018-07-12)	Bonded anchor consisting of a cartridge with injection mortar ESSVE HY for use in post-installed rebar connections: • concrete strength classes C12/15 to C50/60.	Alle artikkelnummer i produktgruppen er dekket av ETA.
ETA-18/0615 (2019-02-14)	Bonded anchor consisting of a cartridge with injection mortar ESSVE HY and a steel element for use in: cracked concrete strength classes C20/25 to C50/60. uncracked concrete strength classes C20/25 to C50/60.	Alle artikkelnummer i produktgruppen er dekket av ETA.

Europeisk teknisk bedømmelse (ETA)	System for vurdering og verifikasjon av byggevarers ytelser (AVCP)	Europeisk bedømmelsesdokument	Teknisk bedømmelsesorgan (TAB)	Teknisk(e) kontrollorgan (NB)
ETA-18/0614 (2018-07-12)	1	EAD 330087-00-0601, (2018-04)	DEUTSCHES INSTITUT FÜR BAUTECHNIK (DiBt)	1343 (FPC)
ETA-18/0615 (2019-02-14)	1	EAD 330499-00-0601, (2014-07)	DEUTSCHES INSTITUT FÜR BAUTECHNIK (DiBt)	1343 (FPC)

YTELSESERKLÆRING Nr: 18-HY [NO]

Europeisk teknisk bedømmelse (ETA)	Dimensjon & Materiale	Egenskap	Ytelse	
		Characteristic resistance under static and quasi-static loading	Annex C1	
ETA-18/0614 (2018-07-12)	Rebar Ø8 to Ø32 Tension Anchor ZA M12-M24	Reaction to fire	Class A1	
		Resistance to fire	Annex C2, C3	
		Characteristic resistance to tension load (static and quasi-static loading)	Annex C1, C2, C4, C5	
	Threaded rod M8 to M30 Rebar Ø8 to Ø32	Characteristic resistance to shear load (static and quasi-static loading)	Annex C1, C3, C5, C7	
	Internal threaded rod IG-M6 to IG-M20	Displacements under short term and long- term loading	Annex C8 – C10	
ETA-18/0615 (2019-02-14)		Durability	Annex B1	
	Threaded rod M8 to M30 (except hot-dipped) Rebar Ø8 to Ø32	Characteristic resistance and displacements for seismic performance category C1	Annex C2, C3, C6, C7	
	Threaded rod M8 to M24 (except hot-dipped)	Characteristic resistance and displacements for seismic performance category C2	NPD	
	-	Content, emission and/or release of dangerous substances	NPD	

Ytelser for denne byggevaren som er anført ovenfor, er i overensstemmelse med de angitte ytelsene. Denne ytelseserklæringen er utarbeidet i overensstemmelse med forordning (EU) nr. 305/2011 under produsentens eneansvar, som anført ovenfor.

Kista 2019-03-25

Underskrevet for produsenten og på dennes vegne:

Viktor Bukowski

Product Developer/Technical expert – Fasteners

[ETA's attached as appendixes]

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-18/0614 of 12 July 2018

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

ESSVE injection system HY for rebar connection

Systems for post-installed rebar connections with mortar

ESSVE Produkter AB Esbogatan 14 164 74 KISTA SCHWEDEN

ESSVE Plant No. 671

21 pages including 3 annexes which form an integral part of this assessment

EAD 330087-00-0601

Page 2 of 21 | 12 July 2018

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

English translation prepared by DIBt

Page 3 of 21 | 12 July 2018

Specific Part

1 Technical description of the product

The subject of this European Technical Assessment is the post-installed connection, by anchoring or overlap connection joint, of reinforcing bars (rebars) in existing structures made of normal weight concrete, using the "ESSVE Injection system HY for rebar connection" in accordance with the regulations for reinforced concrete construction.

Reinforcing bars made of steel with a diameter ϕ from 8 to 32 mm or the tension anchor ZA from sizes M12 to M24 according to Annex A and injection mortar ESSVE HY are used for rebar connections. The rebar is placed into a drilled hole filled with injection mortar and is anchored via the bond between rebar, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the rebar connection of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance under static and quasi-static loading	See Annex C 1

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance		
Reaction to fire	Class A1		
Resistance to fire	See Annex C 2 and C 3		

Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with European Assessment Document EAD No. 330087-00-0601, the applicable European legal act is: [96/582/EC].

The system(s) to be applied is (are): 1

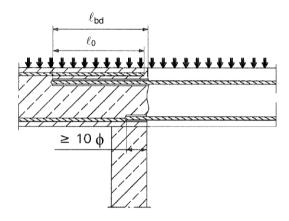
Page 4 of 21 | 12 July 2018

English translation prepared by DIBt

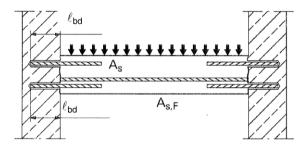
5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

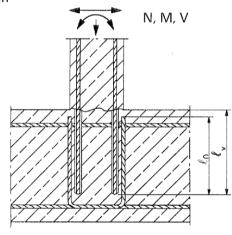
Issued in Berlin on 12 July 2018 by Deutsches Institut für Bautechnik

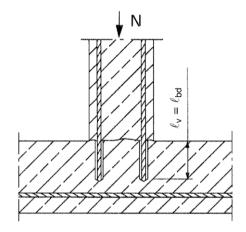

BD Dipl.-Ing. Andreas Kummerow Head of Department

beglaubigt: Baderschneider



Installation post installed rebar


Figure A1: Overlapping joint for rebar connections of slabs and beams


Figure A3: End anchoring of slabs or beams (e.g. designed as simply supported)

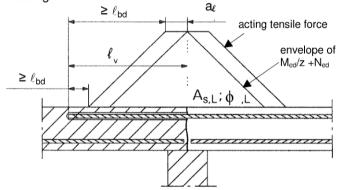

Figure A2: Overlapping joint at a foundation of a wall or column where the rebars are stressed in tension

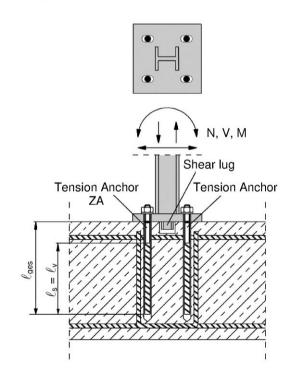
Figure A4: Rebar connection for components stressed primarily in compression. The rebars sre stressed in compression

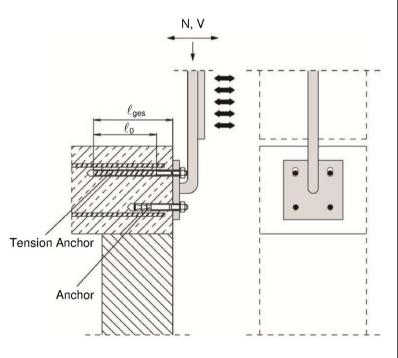
Figure A5: Anchoring of reinforcement to cover the line of acting tensile force

Note to Figure A1 to A5:

In the Figures no transverse reinforcement is plotted, the transverse reinforcement shall comply with EN 1992-1-1:2004+AC:2010.

Preparing of joints according to Annex B 2


ESSVE Injection System HY for rebar connection	
Product description Installed condition and examples of use for rebars	Annex A 1



Installation tension anchor ZA

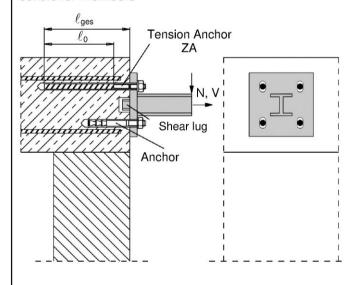
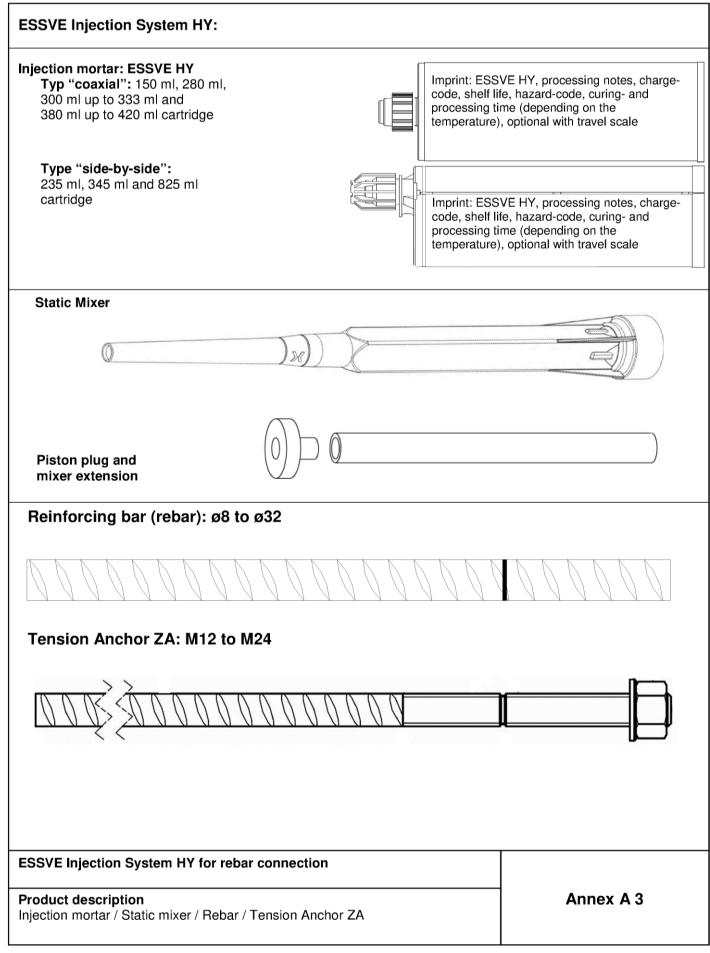

Figure A6: Overlapping joint of a column stressed in bending to a foundation

Figure A7: Overlap joint for the anchorage of barrier posts

Figure A8: Overlap joint for the anchorage to centilever members

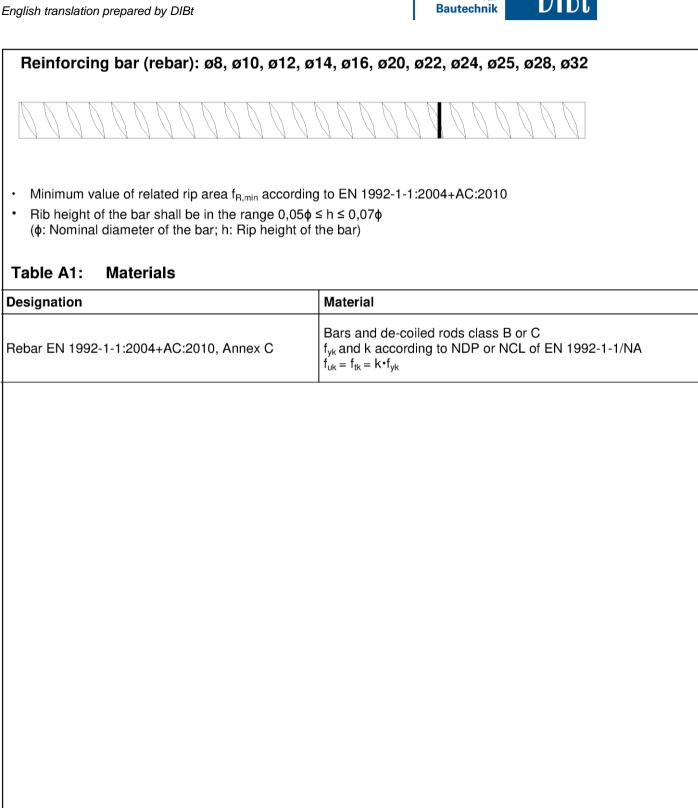
Note to Figure A6 to A8:

In the Figures no transverse reinforcement is plotted, the transverse reinforcement shall comply with EN 1992-1-1:2002+AC:2010


ESSVE Injection System HY for rebar connection
--

Product description

Installed condition and examples of use for tension anchors ZA


Annex A 2

Page 8 of European Technical Assessment ETA-18/0614 of 12 July 2018

ESSVE Injection System HY for rebar connection	
Product description	Annex A 4
Specifications Rebar	

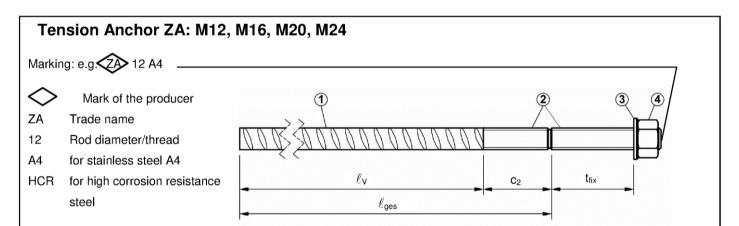


Table A2: Materials

		Material											
Part	Part Designation		ZA vz			ZA A4				ZA HCR			
			M16	M20	M24	M12	M16	M20	M24	M12	M16	M20	M24
1	Reinforcement bar		Class B according to NDP or NCL of EN 1992-1-1/NA $f_{uk} = f_{tk} = k \cdot f_{vk}$										
2	Threaded rod	Steel, zinc plated according to EN 10087:1998 or EN 10263:2001			Stainless steel, 1.4362, 1.4401, 1.4404, 1.4571, EN 10088-1:2014			High corrosion resistant steel, 1.4529, 1.4565, EN 10088-1:2014					
	f _{yk} [N/mm²]		64	40			640		560		640		560
3	Washer	Steel, zinc plated according			Stainless steel, 1.4362,			High corrosion resistant					
4	Nut	to EN 10087:1998 or EN 10263:2001			1.4401, 1.4404, 1.4571, EN 10088-1:2014			steel, 1.4529, 1.4565, EN 10088-1:2014					

Table A3: Dimensions and installation parameter

Size				ZA-M12	ZA-M16	ZA-M20	ZA-M24	
Diameter of threaded rod			[mm]	12	16	20	24	
Diameter of reinfor	cement bar		[mm]	12	16	20	25	
Drill hole diameter			[mm]	16	20	25	32	
Diameter of cleara	Diameter of clearance hole in fixture		[mm]	14	18	22	26	
With across nut flats		sw	[mm]	19	24	30	36	
Stress area		As	[mm ²]	84	157	245	353	
Effective embedme	ent depth	$\ell_{\mathbf{v}}$	[mm]	according to static calculation				
Length of bonded	plated		[mm]	≥ 20	≥ 20	≥ 20	≥ 20	
thread A4/HCR		C ₂	[mm]	≥ 100	≥ 100	≥ 100	≥ 100	
Minimum thickness of fixture		t _{fix}	[mm]	5	5	5	5	
Maximum thickness of fixture		t _{fix}	[mm]	3000	3000	3000	3000	
Maximum installati	on torque	T _{max}	[Nm]	50	100	150	150	

ESSVE Injection System HY for rebar connection	
Product description Specifications Tension Anchor ZA	Annex A 5

Specifications of intended use

Anchorages subject to:

- · Static and quasi-static loads.
- Fire exposure

Base materials:

- Reinforced or unreinforced normal weight concrete according to EN 206-1:2000.
- Strength classes C12/15 to C50/60 according to EN 206-1:2000.
- Maximum chloride concrete of 0,40% (CL 0.40) related to the cement content according to EN 206-1:2000.
- Non-carbonated concrete.

Note: In case of a carbonated surface of the existing concrete structure the carbonated layer shall be removed in the area of the post-installed rebar connection with a diameter of $\phi + 60$ mm prior to the installation of the new rebar.

The depth of concrete to be removed shall correspond to at least the minimum concrete cover in accordance with EN 1992-1-1:2004+AC:2010.

The foregoing may be neglected if building components are new and not carbonated and if building components are in dry conditions.

Temperature Range:

• - 40°C to +80°C (max. short term temperature +80°C and max long term temperature +50°C).

Use conditions (Environmental conditions):

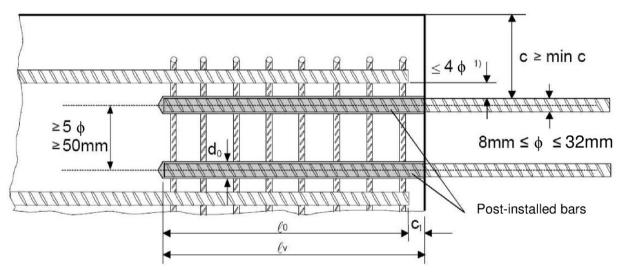
- Structures subject to dry internal conditions or subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist
 - (stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure and to permanently damp internal condition, if other particular aggressive conditions exist (high corrosion resistant steel).

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Design:

- · Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- · Verifiable calculation notes and drawings are prepared taking account of the forces to be transmitted.
- Design according to EN 1992-1-1:2004+AC:2010, EN 1992-1-2:2004+AC:2008 and Annex B 2 and B 3.
- The actual position of the reinforcement in the existing structure shall be determined on the basis of the construction documentation and taken into account when designing.

Installation:


- · Dry or wet concrete.
- · It must not be installed in flooded holes.
- · Hole drilling by hammer drill (HD) or compressed air drill mode (CD).
- The installation of post-installed rebar resp. tension anchors shall be done only by suitable trained installer and under supervision on site; the conditions under which an installer may be considered as suitable trained and the conditions for supervision on site are up to the Member States in which the installation is done.
- Check the position of the existing rebars (if the position of existing rebars is not known, it shall be determined using a rebar detector suitable for this purpose as well as on the basis of the construction documentation and then marked on the building component for the overlap joint).

ESSVE Injection System HY for rebar connection	
Intended use Specifications	Annex B 1

Figure B1: General construction rules for post-installed rebars

- · Only tension forces in the axis of the rebar may be transmitted
- The transfer of shear forces between new concrete and existing structure shall be designed additionally according to EN 1992-1-1:2004+AC:2010.
- The joints for concreting must be roughened to at least such an extent that aggregate protrude.

If the clear distance between lapped bars exceeds 4φ, then the lap length shall be increased by the difference between the clear bar distance and 4φ.

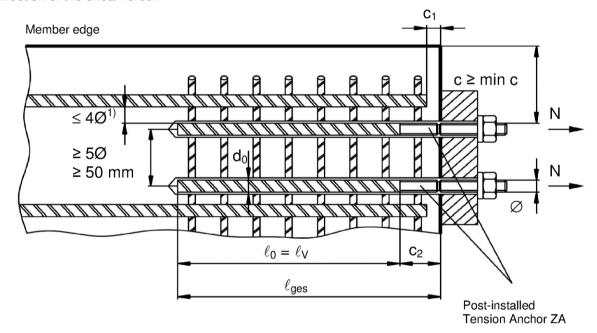
The following applies to Figure B1:

c concrete cover of post-installed rebar concrete cover at end-face of existing rebar

min c minimum concrete cover according to Table B1 and to EN 1992-1-1:2004+AC:2010, Section 4.4.1.2

diameter of post-installed rebar

 ℓ_0 lap length, according to EN 1992-1-1:2004+AC:2010, Section 8.7.3


 $\ell_{\rm v}$ effective embedment depth, $\geq \ell_0 + c_1$ d₀ nominal drill bit diameter, see Annex B 6

ESSVE Injection System HY for rebar connection	
Intended use General construction rules for post-installed rebars	Annex B 2

Figure B2: General construction rules for tension anchors ZA

- · The length of the bonded-in thread may be not be accounted as anchorage
- · Only tension forces in the direction of the bar axis may be transmitted by the tension anchor ZA
- The tension force must be transferred via an overlap joint to the reinforcement in the building part.
- The transfer of shear forces shall be ensured by appropriate additional measures, e.g shear lugs or by anchors with an European technical assessment.
- In the anchor plate, the holes for the tension anchors shall be executed as elongated holes with axis in the direction of the shear force.

1) If the clear distance between lapped bars exceeds 4φ, then the lap length shall be increased by the difference between the clear bar distance and 4φ.

The following applies to Figure B2:

c concrete cover of tension anchor ZA

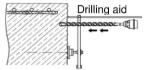
c₁ concrete cover at end-face of existing rebar

c₂ Length of bonded thread

min c minimum concrete cover according to Table B1 and to EN 1992-1-1:2004+AC:2010, Section 4.4.1.2

φ diameter of tension anchor

 ℓ_0 lap length, according to EN 1992-1-1:2004+AC:2010, Section 8.7.3


 $\begin{array}{ll} \ell_{\rm v} & & \text{effective embedment depth,} \geq \ell_0 + c_1 \\ \ell_{\rm ges} & & \text{overall embedment depth,} \geq \ell_0 + c_2 \end{array}$

d₀ nominal drill bit diameter, see Annex B 6

ESSVE Injection System HY for rebar connection	
Intended use	Annex B 3
General construction rules for tension anchors	
General construction rules for tension anchors	

Table B1: Minimum concrete cover min c¹⁾ of post-installed rebar depending of drilling method

Drilling method	Rebar diameter	Without drilling aid	With drilling aid
Hammer drilling (HD)	< 25 mm	30 mm + 0,06 · $\ell_{\rm v}$ ≥ 2 ϕ	30 mm + 0,02 · ℓ_{v} ≥ 2 ϕ
Hammer drilling (HD)	≥ 25 mm	40 mm + 0,06 · $\ell_{\rm v}$ ≥ 2 ϕ	40 mm + 0,02 · ℓ_{v} ≥ 2 ϕ
Compressed air drilling (CD)	< 25 mm	50 mm + 0,08 · ℓ _v	50 mm + 0,02 · ℓ _v
Compressed air drilling (CD)	≥ 25 mm	60 mm + 0,08 · ℓ _v	60 mm + 0,02 · ℓ _v

see Annex B2, Figures B1 and Annex B3, Figure B2
Comments: The minimum concrete cover acc. EN 1992-1-1:2004+AC:2010 must be observed

Table B2: maximum embedment depth $\ell_{v,max}$

Rebar	Tension anchor	
ф	ф	$\ell_{v,max}$ [mm]
8 mm		1000
10 mm		1000
12 mm	M12	1200
14 mm		1400
16 mm	M16	1600
20 mm	M20	2000
22 mm		2000
24 mm		2000
25 mm	M24	2000
28 mm		2000
32 mm		2000

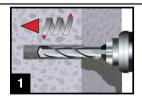
Table B3: Base material temperature, gelling time and curing time

Concrete	tem	perature	Gelling working time ¹⁾	Minimum curing time in dry concrete	Minimum curing time in wet concrete
- 5 °C	- 5 °C to - 1 °C		50 min	5 h	10 h
0 °C	0 °C to + 4 °C		25 min	3,5 h	7 h
+ 5 °C	5 °C to + 9 °C		15 min	2 h	4 h
+ 10 °C	+ 10 °C to + 14 °C		10 min	1 h	2 h
+ 15 °C	to	+ 19 °C	6 min	40 min	60 min
+ 20 °C	to	+ 29 °C	3 min	30 min	60 min
+ 30 °C to + 40 °C		+ 40 °C	2 min	30 min	60 min
Cartridge temperature				+5°C to +40°C	

¹⁾ t_{gel}: maximum time from starting of mortar injection to completing of rebar setting.

ESSVE Injection System HY for rebar connection	
Intended use Minimum concrete cover Maximum embedment depth / working time and curing times	Annex B 4

Table B4: Dispensing tools

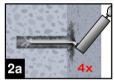

Cartridge type/size	Har	nd tool	Pneumatic tool
Coaxial cartridges 150, 280, 300 up to 333 ml			
300 up to 333 iiii	/		
	e.g. Type ⊦	297 or H244C	e.g. Type TS 492 X
Coaxial cartridges 380 up to 420 ml			
	e.g. Type CCM 380/10	e.g. Type H 285 or H244C	e.g. Type TS 485 LX
Side-by-side cartridges 235, 345 ml		R	
	e.g. Type CBM 330A	e.g. Type H 260	e.g. Type TS 477 LX
Side-by-side cartridge 825 ml	-	-	
			e.g. Type TS 498X

All cartridges could also be extruded by a battery tool.

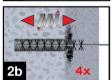
ESSVE Injection System HY for rebar connection	
Intended Use Dispensing tools	Annex B 5

A) Bore hole drilling

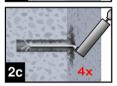
1. Drill a hole into the base material to the size and embedment depth required by the selected reinforcing bar with carbide hammer drill (HD) or a compressed air drill (CD). In case of aborted drill hole: the drill hole shall be filled with mortar.


Hammer drill (HD)

Compressed air drill (CD)

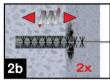

Rebar - ф	ZA- ф	Drill - Ø [mm]
8 mm		12
10 mm		14
12 mm	M12	16
14 mm		18
16 mm	M16	20
20 mm	M20	25
22 mm		28
24 mm		32
25 mm	M24	32
28 mm		35
32 mm		40

B) Bore hole cleaning


MAC: Cleaning for bore hole diameter $d_0 \le 20$ mm and bore hole depth $h_0 \le 10d_s$

2a. Starting from the bottom or back of the bore hole, blow the hole clean a hand pump (Annex B 7) a minimum of four times.

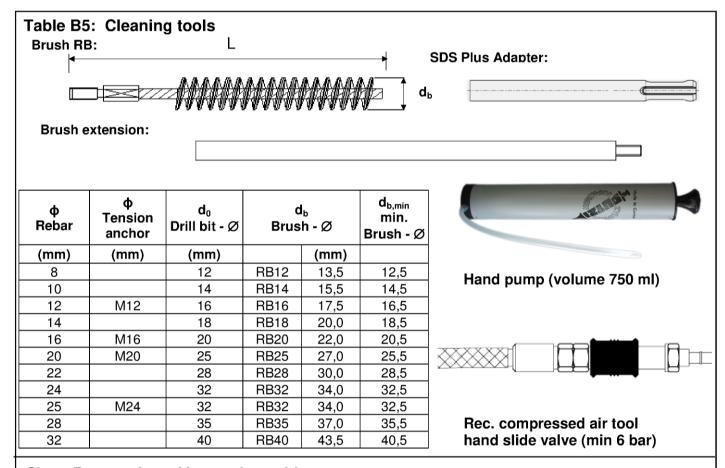
2b. Check brush diameter (Table B5). Brush the hole with an appropriate sized wire brush > d_{b,min} (Table B5) a minimum of four times in a twisting motion.
If the bore hole ground is not reached with the brush, a brush extension shall be used.



2c. Finally blow the hole clean again with a hand pump (Annex B 7) a minimum of four times.

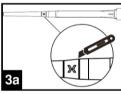
CAC: Cleaning for all bore hole diameter and bore hole depth

2a. Starting from the bottom or back of the bore hole, blow the hole clean with compressed air (min. 6 bar) (Annex B 7) a minimum of two times until return air stream is free of noticeable dust. If the bore hole ground is not reached an extension shall be used.

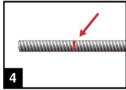

2b. Check brush diameter (Table B5). Brush the hole with an appropriate sized wire brush > d_{b,min} (Table B5) a minimum of two times. If the bore hole ground is not reached with the brush, a brush extension shall be used (Table B5).

Finally blow the hole clean again with compressed air (min. 6 bar) (Annex B 7) a minimum of two times until return air stream is free of noticeable dust. If the bore hole ground is not reached an extension shall be used.

ESSVE Injection System HY for rebar connection	
Intended Use Installation instruction: Bore hole drilling and Bore hole cleaning	Annex B 6

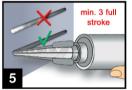


C) Preparation of bar and cartridge



3. Attach the supplied static-mixing nozzle to the cartridge and load the cartridge into the correct dispensing tool.

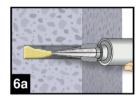
For every working interruption longer than the recommended working time (Table B3) as well as for every new cartridges, a new static-mixer shall be used.



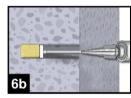
3a. In case of using the mixer extension VL16/1,8, the tip of the mixer nozzle has to be cut off at position "X".

4. Prior to inserting the reinforcing bar into the filled bore hole, the position of the embedment depth shall be marked (e.g. with tape) on the reinforcing bar and insert bar in empty hole to verify hole and depth $\ell_{\rm v}$.

The reinforcing bar should be free of dirt, grease, oil or other foreign material.

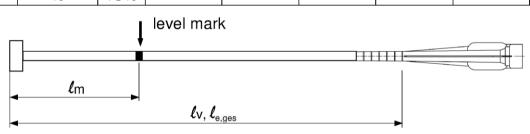


5. Prior to dispensing into the anchor hole, squeeze out separately the mortar until it shows a consistent grey colour, but a minimum of three full strokes, and discard non-uniformly mixed adhesive components.


· ·	
ESSVE Injection System HY for rebar connection	
Intended Use	Annex B 7
Installation instruction: Cleaning tools and	
Preparation of bar and cartridge	

D) Filling the bore hole

6. Starting from the bottom or back of the cleaned anchor hole fill the hole up to approximately two-thirds with adhesive. Slowly withdraw the static mixing nozzle as the hole fills to avoid creating air pockets. For embedment larger than 190 mm an extension nozzle shall be used.



For overhead and horizontal installation and bore holes deeper than 240 mm a piston plug and the appropriate mixer extension must be used.

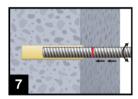
Observe the gel-/ working times given in Table B3.

Table B6: Piston plugs, max anchorage depth and mixer extension

	Tension		Drill		Cartridge All sizes			ridge: de (825 ml)		
Bar size	anchor	bit	- Ø	Piston plug	Hand or pattery tool Phelimatic tool		Hand or battery tool Pneumatic tool Pneuma		atic tool	
ф	ф	HD	CD	, p.e.g	$I_{v,max}$	Mixer extension	I _{v,max}	Mixer extension	$I_{v,max}$	Mixer extension
[mm]	[mm]	[m	m]		[cm]		[cm]		[cm]	
8		12	-	-	4	80		80	VI 40/0.75	
10		14	-	VS14		0]	100	VL 10/0,75
12	M12	1	6	VS16	70		400		120	
14		1	8	VS18			100		140	
16	M16	2	:0	VS20					160	
20	M20	25	26	VS25		VL 10/0,75	70	VL 10/0,75		
22		2	8	VS28			50		200	VL 16/1,8
24		3	2	VS32	50	50 50			200	
25	M24	3	2	VS32	632 635					
28		3	5	VS35					200]
32		4	.0	VS40					200	

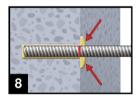
Injection tool must be marked by mortar level mark $\ell_{\rm m}$ and anchorage depth $\ell_{\rm v}$ resp. $\ell_{\rm e.ges}$ with tape or marker.

Quick estimation: $\ell_m = 1/3 \cdot \ell_v$

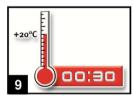

Continue injection until the mortar level mark $\ell_{\rm m}$ becomes visible.

Optimum mortar volume: $\ell_{\rm m} = \ell_{\rm v} \text{ resp. } \ell_{\rm e,ges} \cdot \left(1,2 \cdot \frac{\phi^2}{d_0^2} - 0,2\right) \text{ [mm]}$

ESSVE Injection System HY for rebar connection	
Intended Use Installation instruction: Filling the bore hole	Annex B 8



E) Inserting the rebar



7. Push the reinforcing bar into the anchor hole while turning slightly to ensure positive distribution of the adhesive until the embedment depth is reached.

The bar should be free of dirt, grease, oil or other foreign material.

8. Be sure that the bar is inserted in the bore hole until the embedment mark is at the concrete surface and that excess mortar is visible at the top of the hole. If these requirements are not maintained, the application has to be renewed. For overhead installation fix embedded part (e.g. wedges).

Installation instruction: Inserting rebar

9. Observe gelling time $t_{\rm gel}$. Attend that the gelling time can vary according to the base material temperature (see Table B3). It is not allowed to move the bar after geling time $t_{\rm gel}$ has elapsed.

Allow the adhesive to cure to the specified time prior to applying any load. Do not move or load the bar until it is fully cured (attend Table B3). After full curing time t_{cure} has elapsed, the add-on part can be installed.

ESSVE Injection System HY for rebar connection

Intended Use

Annex B 9

Minimum anchorage length and minimum lap length

The minimum anchorage length $\ell_{b,min}$ and the minimum lap length $\ell_{0,min}$ according to EN 1992-1-1:2004+AC:2010 ($\ell_{b,min}$ acc. to Eq. 8.6 and Eq. 8.7 and $\ell_{0,min}$ acc. to Eq. 8.11) shall be multiply by the amplification factor α_{lb} according to Table C1.

Table C1: Amplification factor α_{lb} related to concrete class and drilling method

Concrete class	Drilling method	Bar size	Amplification factor α _{lb}
C12/15 to C50/60	Hammer drilling and compressed air drilling	8 mm to 32 mm ZA-M12 to ZA-M24	1,0

Table C2: Reduction factor k_b for all drilling methods

Rebar - Ø	Concrete class								
ф	C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
8 to 32 mm					1.0				
ZA-M12 to ZA-M24					1,0				

Table C3: Design values of the ultimate bond stress f_{bd,PIR} in N/mm² for all drilling methods and for good conditions

$$f_{bd,PIR} = k_b \cdot f_{bd}$$

with

 f_{bd} : Design value of the ultimate bond stress in N/mm² considering the concrete classes and the rebar diameter according to EN 1992-1-1:2004+AC:2010.

(for all other bond conditions multiply the values by 0.7)

k_b: Reduction factor according to Table C2

Rebar - Ø	Concrete class								
ф	C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
8 to 32 mm ZA-M12 to ZA-M24	1,6	2,0	2,3	2,7	3,0	3,4	3,7	4,0	4,3

ESSVE Injection System HY for rebar connection	
Performances	Annex C 1
Amplification factor α _{lb.} Reduction factor	
Design values of ultimate bond resistance for PIR	

Design value of the ultimate bond stress $f_{bd,fi}$ under fire exposure for concrete classes C12/15 to C50/60, (all drilling methods):

The design value of the bond stress f_{bd,fi} under fire exposure has to be calculated by the following equation:

$$f_{bd,fi} = k_{fi}(\theta) \cdot f_{bd,PIR} \cdot \gamma_c / \gamma_{M,fi}$$

with: $\theta \le 364^{\circ}\text{C}$: $k_{fi}(\theta) = 30,34 \cdot e^{(\theta \cdot -0,011)} / (f_{bd,PIR} \cdot 4,3) \le 1,0$

 $\theta > 364^{\circ}C$: $k_{fi}(\theta) = 0$

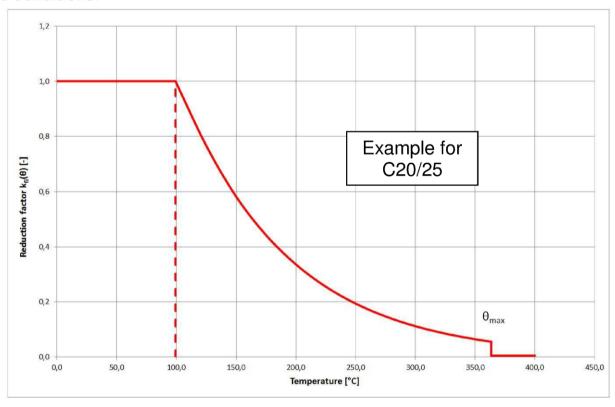
f_{bd,fi} Design value of the ultimate bond stress in case of fire in N/mm²

θ Temperature in °C in the mortar layer.

 $k_{fi}(\theta)$ Reduction factor under fire exposure.

f_{bd,PIR} Design value of the ultimate bond stress in N/mm² in cold condition according to Table C3

considering the concrete classes, the rebar diameter and the bond conditions according to


EN 1992-1-1:2004+AC:2010.

 γ_c partially safety factor according to EN 1992-1-1:2004+AC:2010

 $\gamma_{M,fi}$ partially safety factor according to EN 1992-1-2:2004+AC:2008

For evidence under fire exposure the anchorage length shall be calculated according to EN 1992-1-1:2004+AC:2010 Equation 8.3 using the temperature-dependent ultimate bond stress f_{bd,fi}.

Example graph of Reduction factor $k_{fi}(\theta)$ for concrete classes C20/25 for good bond conditions:

ESSVE Injection System HY for rebar connection	
Performances Design value of bond strength f _{bd,fi} under fire exposure	Annex C 2

Table C4: Characteristic tension strength for tension anchor ZA under fire exposure,

concrete classes C12/15 to C50/60, according to Technical Report TR 020

Tension Anchor				M12	M16	M20	M24			
Steel, zinc plated	(ZA vz)					•				
	R30				2	0				
Characteristic	R60	$\sigma_{ extsf{Rk,s,fi}}$			1	5				
steel strength	R90		$\sigma_{ ext{Rk,s,fi}}$	$oldsymbol{\sigma}_{Rk,s,fi}$	$oldsymbol{\sigma}_{Rk,s,fi}$	[N/mm²] -	[N/mm²]		1	3
	R120				1	0				
Stainless Steel (Z	A A4 or Z	A HCR)								
	R30				3	0				
Characteristic	R60	$\sigma_{Rk,s,fi}$	[NI/mm2]		2	5				
steel strength	R90		[N/mm²] -		2	0				
	R120				1	6				

Design value of the steel strength $\sigma_{\text{Rd,s,fi}}$ under fire exposure

The design value of the steel strength $\sigma_{\text{Rd,s,fi}}$ under fire exposure has to be calculated by the following equation:

$$\sigma_{\text{Rd,s,fi}} = \sigma_{\text{Rk,s,fi}} \, / \, \gamma_{\text{M,fi}}$$

with:

 $\sigma_{Rk,s,fi}$ characteristic steel strength according to Table C4

 $\gamma_{M,fi}$ partially safety factor according to EN 1992-1-2:2004+AC:2008

ESSVE Injection System HY for rebar connection	
Performances	Annex C 3
Design value of the steel strength $\sigma_{\text{Rd,s,fi}}$ for tension anchor ZA under fire exposure	

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-18/0615 of 14 February 2019

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

Essve Injection system HY for concrete

Bonded fastener for use in concrete

ESSVE Produkter AB Esbogatan 14 164 74 KISTA SCHWEDEN

ESSVE Plant No. 671

25 pages including 3 annexes which form an integral part of this assessment

EAD 330499-00-0601

ETA-18/0615 issued on 4 September 2018

Z10652.19

European Technical Assessment ETA-18/0615 English translation prepared by DIBt

Page 2 of 25 | 14 February 2019

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Z10652.19 8.06.01-13/19

Page 3 of 25 | 14 February 2019

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The "Essve Injection system HY for concrete" is a bonded anchor consisting of a cartridge with injection mortar ESSVE HY and a steel element. The steel element consist of a commercial threaded rod with washer and hexagon nut in the range of M8 to M30, reinforcing bar in the range of diameter \emptyset 8 to \emptyset 32 mm or internal threaded rod IG-M6 to IG-M20.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load	See Annex
(static and quasi-static loading)	C 1, C 2, C 4, C 5
Characteristic resistance to shear load	See Annex
(static and quasi-static loading)	C 1, C 3, C 5, C 7
Displacements	See Annex
(static and quasi-static loading)	C 8, C 9, C 10
Characteristic resistance for seismic performance	See Annex
category C1	C 2, C 3, C 5, C 7
Characteristic resistance and displacements for seismic	See Annex
performance category C2	C 2, C 3, C 8

3.2 Hygiene, health and the environment (BWR 3)

Essential characteristic	Performance
Content, emission and/or release of dangerous substances	No performance assessed

Z10652.19 8.06.01-13/19

Page 4 of 25 | 14 February 2019

English translation prepared by DIBt

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

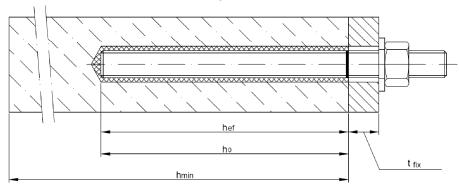
In accordance with the European Assessment Document EAD 330499-00-0601 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

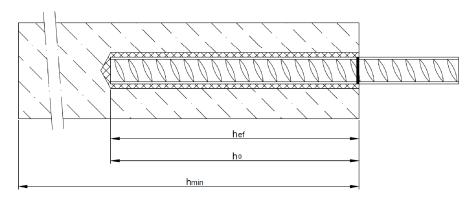
5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

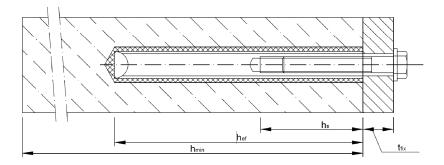
Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 14 February 2019 by Deutsches Institut für Bautechnik


BD Dipl.-Ing. Andreas Kummerow Head of Department

beglaubigt: Baderschneider


Z10652.19 8.06.01-13/19


Installation threaded rod M8 up to M30

Installation reinforcing bar Ø8 up to Ø32

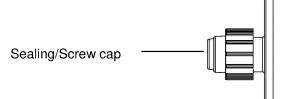
Installation internal threaded anchor rod IG-M6 up to IG-M20

 t_{fix} = thickness of fixture

h_{ef} = effective anchorage depth

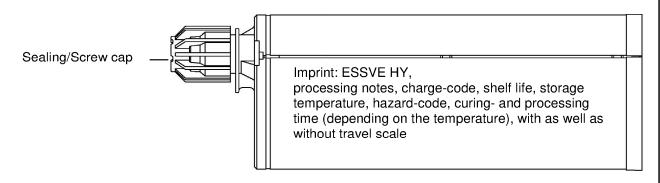
 h_0 = depth of drill hole

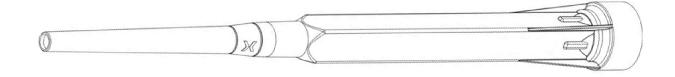
 h_{min} = minimum thickness of member


Essve Injection system HY for concrete	
Product description	Annex A 1
Installed condition	

Z10654.19 8.06.01-13/19

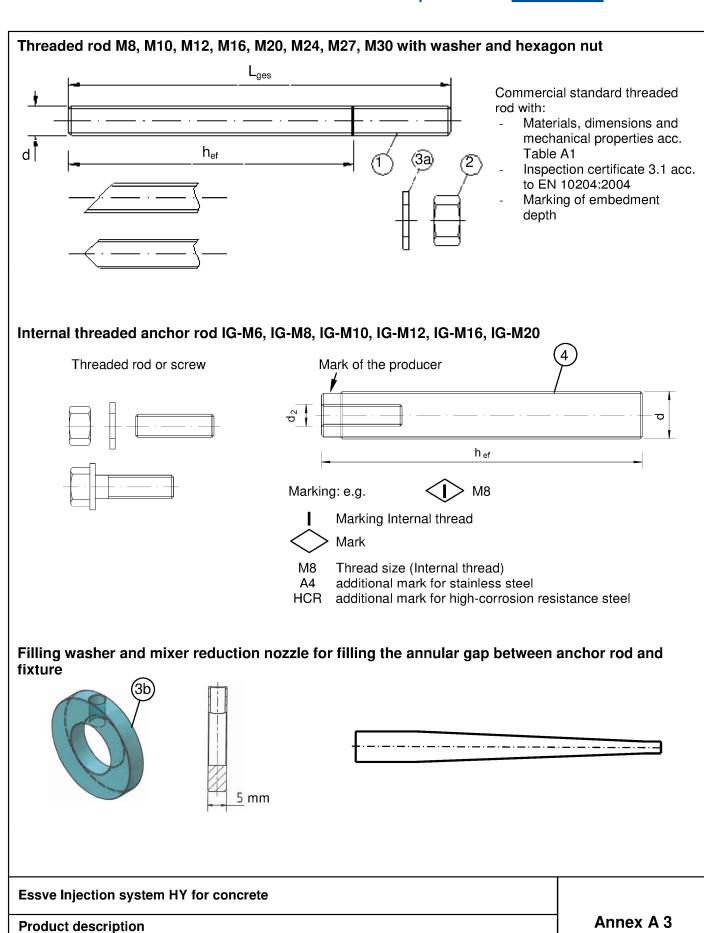
Cartridge: ESSVE HY


150 ml, 280 ml, 300 ml up to 333 ml and 380 ml up to 420 ml cartridge (Type: coaxial)


Imprint: ESSVE HY,

processing notes, charge-code, shelf life, storage temperature, hazard-code, curing- and processing time (depending on the temperature), with as well as without travel scale

235 ml, 345 ml up to 360 ml and 825 ml cartridge (Type: "side-by-side")

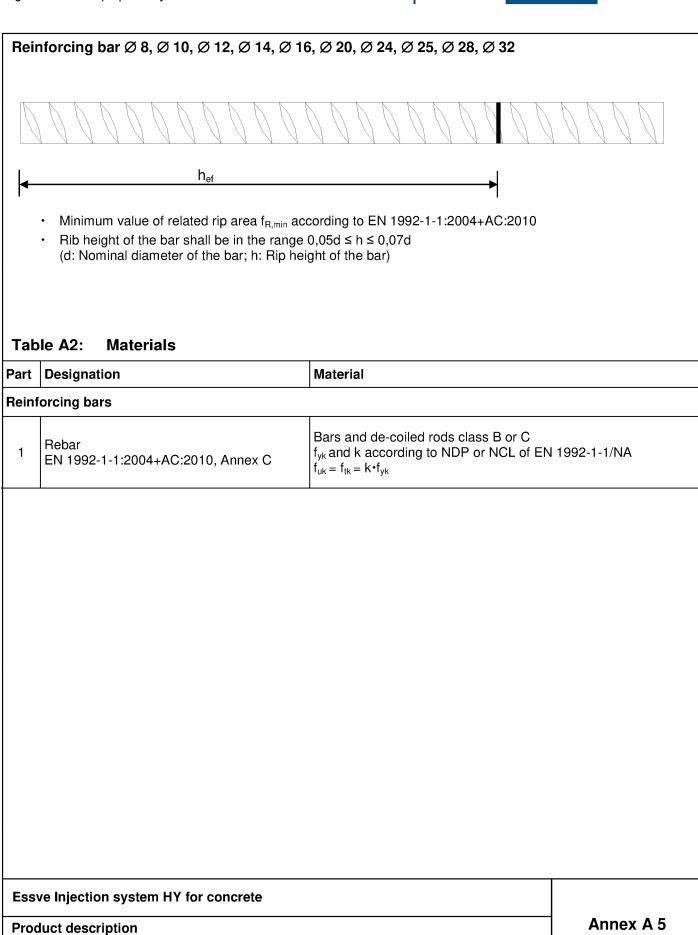

Static Mixer

Essve Injection system HY for concrete	
Product description Injection system	Annex A 2

Z10654.19 8.06.01-13/19

Z10654.19 8.06.01-13/19

Threaded rod, internal threaded rod and filling washer


	Designation	Material		
Stee	el, zinc plated (Steel acc. to EN 100	87:1998 or EN 10263:	2001)	
	plated ≥ 5 μm acc. to EN ISO 4042:1			61:2009 and
ΞN	ISO 10684:2004+AC:2009 or sherard	ized ≥ 40 μm acc. to El		
			-	$\frac{1}{2}$ mm ² ; A ₅ > 8% fracture elongation
		Property class		$\frac{1}{2}$ mm ² ; A ₅ > 8% fracture elongation
1	Anchor rod	acc. to EN ISO 898-1:2013		mm^2 ; $A_5 > 8\%$ fracture elongation
		LIV 130 090-1.2013		mm^2 ; $A_5 > 8\%$ fracture elongation mm^2 ; $A_5 > 12\%$ fracture elongatio
		Dranauti calana	4 for anchor rod class 4.6	
2	Hexagon nut	Property class acc. to	5 for anchor rod class 5.6	
_	Tioxagon nat	EN ISO 898-2:2012	8 for anchor rod class 8.8	0.0
	Washer,		o nor arrener rea orace ere	
3а	(z.B.: EN ISO 887:2006, EN ISO 7089:2000,	Steel zinc plated hot-	dip galvanised or sherardized	
3b	EN ISO 7093:2000 oder EN ISO 7094:2000) Filling washer	Otooi, zino piatea, not	dip gaivariised or sheraraized	
30	Filling washer	Property class	F.O. F. FOO N/2222 F. 400 P	N/mara?. A CO/ functions also set
4	Internal threaded anchor rod	acc. to		N/mm^2 ; $A_5 > 8\%$ fracture elongati
•		EN ISO 898-1:2013	8.8 f _{uk} =800 N/mm ² ; f _{yk} =640 l	N/mm^2 ; $A_5 > 8\%$ fracture elongati
}tai	inless steel A2 (Material 1.4301 / 1.4	303 / 1.4307 / 1.4567 d	or 1.4541, acc. to EN 10088-1:	2014)
ind				
itai	inless steel A4 (Material 1.4401 / 1.4			
4	Anchor rod ¹⁾⁴⁾	Property class		$\frac{120}{\text{mm}^2}$; A ₅ > 12% fracture elongation
1	Anchor rod 7	acc. to EN ISO 3506-1:2009		mm^2 ; $A_5 > 12\%$ fracture elongation mm^2 ; $A_5 > 12\%$ fracture elongation
			80 f_{uk} =800 N/mm ² ; f_{yk} =600 N/ 50 for anchor rod class 50	IIIII ² , A ₅ > 12% fracture elongation
2	Hexagon nut 1)4)	Property class acc. to	70 for anchor rod class 70	
۷	Tiexagon nut	EN ISO 3506-1:2009	80 for anchor rod class 80	
	Washer,		ee let affeitet fea stace ee	
За	(z.B.: EN ISO 887:2006, EN ISO 7089:2000,		.4303 / 1.4307 / 1.4567 or 1.45	
3b	EN ISO 7093:2000 oder EN ISO 7094:2000) Filling washer ⁵⁾	A4: Material 1.4401 / 1	.4404 / 1.4571 / 1.4362 or 1.45	578, EN 10088-1:2014
30	I lilling washer	Property class	50 f _{uk} =500 N/mm ² ; f _{vk} =210 l	N/mm^2 ; $A_5 > 8\%$ fracture elongati
4	Internal threaded anchor rod 1)2)	acc. to	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
		EN ISO 3506-1:2009	70 f _{uk} =700 N/mm ² ; f _{yk} =450 l	N/mm^2 ; $A_5 > 8\%$ fracture elongati
lig	h corrosion resistance steel (Mater	ial 1.4529 or 1.4565, a	cc. to EN 10088-1: 2014)	
		Property class	50 f _{uk} =500 N/mm ² ; f _{yk} =210 N/	$'$ mm 2 ; A $_5$ > 12% fracture elongatio
1	Anchor rod ¹⁾	acc. to		mm^2 ; $A_5 > 12\%$ fracture elongation
		EN ISO 3506-1:2009	80 f _{uk} =800 N/mm ² ; f _{yk} =600 N/	mm^2 ; $A_5 > 12\%$ fracture elongatic
		Property class	50 for anchor rod class 50	
2	Hexagon nut 1)	acc. to	70 for anchor rod class 70	
		EN ISO 3506-1:2009	80 for anchor rod class 80	
За	Washer, (z.B.: EN ISO 887:2006, EN ISO 7089:2000,			
ou	EN ISO 7093:2000 oder EN ISO 7094:2000)	Material 1.4529 or 1.4	565, acc. to EN 10088-1: 2014	
3b	Filling washer			
		Property class	50 f _{uk} =500 N/mm ² ; f _{yk} =210 f	N/mm ² ; A ₅ > 8% fracture elongat
4	Internal threaded anchor rod 1) 2)	acc. to	70 f _{uk} =700 N/mm ² ; f _{vk} =450 l	N/mm^2 ; $A_5 > 8\%$ fracture elongat
1)	Property class 70 for anchor rods up to M	EN ISO 3506-1:2009		Trimit, 7 is > 0 /o madiate diorigati
	for IG-M20 only property class 50	24 and internal threaded a	anchor roas up to iG-ivi 16,	
	$A_5 > 8\%$ fracture elongation if <u>no</u> requirem	nent for performance cated	orv C2 exists	
	Property class 80 only for stainless steel		,···	
	Filling washer only with stainless steel A4			
5)	•			
5)				
	sve Injection system HY for co	a oroto		

Z10654.19 8.06.01-13/19

Materials threaded rod and internal threaded rod

Materials reinforcing bar

Z10654.19 8.06.01-13/19

Specifications of intended use

Anchorages subject to:

- Static and quasi-static loads: M8 to M30, Rebar Ø8 to Ø32, IG-M6 to IG-M20.
- Seismic action for Performance Category C1: M8 to M30 (except hot-dip galvanised rods), Rebar Ø8 to Ø32.
- Seismic action for Performance Category C2: M12 to M24 (except hot-dip galvanised rods).

Base materials:

- Reinforced or unreinforced normal weight concrete without fibres according to EN 206:2013.
- Strength classes C20/25 to C50/60 according to EN 206:2013.
- Non-cracked concrete: M8 to M30, Rebar Ø8 to Ø32, IG-M6 to IG-M20.
- Cracked concrete: M8 to M30, Rebar Ø8 to Ø32, IG-M6 to IG-M20.

Temperature Range:

- I: -40 °C to +80 °C (max long term temperature +50 °C and max short term temperature +80 °C)
- II: 40 °C to +120 °C (max long term temperature +72 °C and max short term temperature +120 °C)
- III: 40 °C to +160 °C (max long term temperature +100 °C and max short term temperature +160 °C)

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc coated steel, stainless steel A2 resp. A4 or high corrosion resistant steel).
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel A4 or high corrosion resistant steel).
- Structures subject to external atmospheric exposure and to permanently damp internal condition, if other particular aggressive conditions exist (high corrosion resistant steel).
 - Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The
 position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to
 reinforcement or to supports, etc.).
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- The anchorages are designed in accordance to:
 - EN 1992-4:2018 and Technical Report TR055

Installation:

- Dry, wet concrete or flooded bore holes (not sea-water): M8 to M30, Rebar Ø8 to Ø32, IG-M6 to IG-M20.
- · Hole drilling by hammer (HD), hollow (HDB) or compressed air drill mode (CD).
- Overhead installation allowed.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.

Essve Injection system HY for concrete	
Intended Use Specifications	Annex B 1

Z10654.19 8.06.01-13/19

Table B1: Installation parameters for threaded rod									
Anchor size		M 8	M 10	M 12	M 16	M 20	M 24	M 27	M 30
Diameter of element	$d = d_{nom} [mm] =$	8	10	12	16	20	24	27	30
Nominal drill hole diameter	d ₀ [mm] =	10	12	14	18	22	28	30	35
Effective embedment depth	h _{ef,min} [mm] =	60	60	70	80	90	96	108	120
Effective embedment depth	h _{ef,max} [mm] =	160	200	240	320	400	480	540	600
Diameter of clearance hole in the fixture ¹⁾	d _f [mm] =	9	12	14	18	22	26	30	33
Maximum torque moment	T _{inst} [Nm] ≤	10	20	40 ²⁾	60	100	170	250	300
Minimum thickness of member	h _{min} [mm]		_{ef} + 30 m ≥ 100 mn				h _{ef} + 2d ₀		
Minimum spacing	s _{min} [mm]	40	50	60	75	95	115	125	140
Minimum edge distance	c _{min} [mm]	35	40	45	50	60	65	75	80

¹⁾ For application under seismic loading the diameter of clearance hole in the fixture shall be at maximum d₁ + 1mm or alternatively the annular gap between fixture and anchor rod shall be filled force-fit with mortar. ²⁾ Maximum Torque moment for M12 with steel Grade 4.6 is 35 Nm

Table B2: Installation parameters for rebar

Rebar size	Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32	
Diameter of element	$d = d_{nom} [mm]$	8	10	12	14	16	20	24	25	28	32
Nominal drill hole diameter	d ₀ [mm] =	12	14	16	18	20	25	32	32	35	40
Effective embedment depth	h _{ef,min} [mm] =	60	60	70	75	80	90	96	100	112	128
Enective embedment depth	h _{ef,max} [mm] =	160	200	240	280	320	400	480	500	560	640
Minimum thickness of member	h _{min} [mm]		30 mm 0 mm				h _{ef} +	- 2d ₀			
Minimum spacing	s _{min} [mm]	40	50	60	70	75	95	120	120	130	150
Minimum edge distance	c _{min} [mm]	35	40	45	50	50	60	70	70	75	85

Installation parameters for Internal threaded rod Table B3:

Anchor size		IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M 20
Internal diameter of sleeve	$d_2 [mm] =$	6	8	10	12	16	20
Outer diameter of sleeve ¹⁾	$d = d_{nom} [mm] =$	10	12	16	20	24	30
Nominal drill hole diameter	d ₀ [mm] =	12	14	18	22	28	35
Effective embedment death	h _{ef,min} [mm] =	60	70	80	90	96	120
Effective embedment depth	h _{ef,max} [mm] =	200	240	320	400	480	600
Diameter of clearance hole in the fixture	d _f [mm] =	7	9	12	14	18	22
Maximum torque moment	T _{inst} [Nm] ≤	10	10	20	40	60	100
Thread engagement length min/max	I _{IG} [mm] =	8/20	8/20	10/25	12/30	16/32	20/40
Minimum thickness of member	h _{min} [mm]	$h_{ef} + 30 \text{ mm}$ $h_{ef} + 2d_0$		- 2d ₀			
Minimum spacing s _{min} [mm]		50	60	75	95	115	140
Minimum edge distance	c _{min} [mm]	40	45	50	60	65	80

¹⁾ With metric threads according to EN 1993-1-8:2005+AC:2009

Essve Injection system HY for concrete	
Intended Use Installation parameters	Annex B 2

Z10654.19 8.06.01-13/19

Table B4	Table B4: Parameter cleaning and setting tools									
	Terresco com a da				9 933333					
Threaded Rod	Rebar	Internal threaded rod	d₀ Drill bit - Ø HD, HDB, CA		l₀ h - Ø	d _{b,min} min. Brush - Ø	Piston Installation direction plug of piston plu			
[mm]	[mm]	[mm]	[mm]		[mm]	[mm]		1		1
M8			10	RB10	11,5	10,5				
M10	8	IG-M6	12	RB12	13,5	12,5		No plua	required	
M12	10	IG-M8	14	RB14	15,5	14,5		No plug	required	
	12		16	RB16	17,5	16,5				
M16	14	IG-M10	18	RB18	20,0	18,5	VS18			
	16		20	RB20	22,0	20,5	VS20			
M20		IG-M12	22	RB22	24,0	22,5	VS22			
	20		25	RB25	27,0	25,5	VS25	h _{ef} >	h _{ef} >	
M24		IG-M16	28	RB28		28,5	VS28	250 mm	250 mm	all
M27			30	RB30	31,8	30,5	VS30	230 111111	230 mm	

32

35

40

RB32

RB35

RB40

34,0

37,0

43,5

32,5

35,5

40,5

24 / 25

28

IG-M20

M30

MAC - Hand pump (volume 750 ml)Drill bit diameter (d₀): 10 mm to 20 mm

Drill hole depth (h_0) : $< 10 d_s$ Only in non-cracked concrete

VS32

VS35

VS40

CAC - Rec. compressed air tool (min 6 bar)

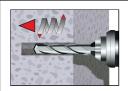
Drill bit diameter (d₀): all diameters

Piston plug for overhead or horizontal installation VS

Drill bit diameter (d₀): 18 mm to 40 mm

Steel brush RB

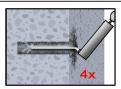
Drill bit diameter (d₀): all diameters


Essve Injection system HY for concrete	
Intended Use	Annex B 3
Cleaning and setting tools	

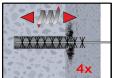
Z10654.19 8.06.01-13/19

Installation instructions

Drilling of the bore hole

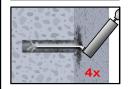


1. Drill with hammer drill a hole into the base material to the size and embedment depth required by the selected anchor (Table B1, B2, or B3), with hammer (HD), hollow (HDB) or compressed air drilling. The use of a hollow drill bit is only in combination with a sufficient vacuum permitted.


In case of aborted drill hole: The drill hole shall be filled with mortar.

Attention! Standing water in the bore hole must be removed before cleaning.

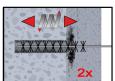
MAC: Cleaning for bore hole diameter $d_0 \le 20$ mm and bore hole depth $h_0 \le 10d_{nom}$ (uncracked concrete only!)



2a. Starting from the bottom or back of the bore hole, blow the hole clean by a hand pump (Annex B 3) a minimum of four times.

2b. Check brush diameter (Table B4). Brush the hole with an appropriate sized wire brush > d_{b,min} (Table B4) a minimum of four times in a twisting motion.

If the bore hole ground is not reached with the brush, a brush extension must be used.



2c. Finally blow the hole clean again with a hand pump (Annex B 3) a minimum of four times.

CAC: Cleaning for all bore hole diameter in uncracked and cracked concrete

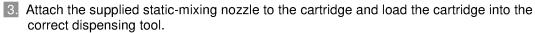
2a. Starting from the bottom or back of the bore hole, blow the hole clean with compressed air (min. 6 bar) (Annex B 3) a minimum of two times until return air stream is free of noticeable dust. If the bore hole ground is not reached an extension must be used.

2b. Check brush diameter (Table B4). Brush the hole with an appropriate sized wire brush > d_{b,min} (Table B4) a minimum of two times in a twisting motion.

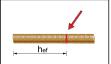
If the bore hole ground is not reached with the brush, a brush extension must be used.

2c. Finally blow the hole clean again with compressed air (min. 6 bar) (Annex B 3) a minimum of two times until return air stream is free of noticeable dust. If the bore hole ground is not reached an extension must be used.

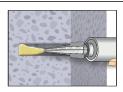
After cleaning, the bore hole has to be protected against re-contamination in an appropriate way, until dispensing the mortar in the bore hole. If necessary, the cleaning has to be repeated directly before dispensing the mortar. In-flowing water must not contaminate the bore hole again.

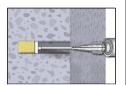

Essve Injection system HY for concrete	
Intended Use Installation instructions	Annex B 4

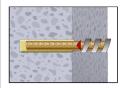
Z10654.19 8.06.01-13/19



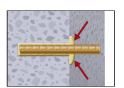
Installation instructions (continuation)


For every working interruption longer than the recommended working time (Table B5) as well as for new cartridges, a new static-mixer shall be used.

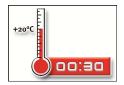

4. Prior to inserting the anchor rod into the filled bore hole, the position of the embedment depth shall be marked on the anchor rods.


5. Prior to dispensing into the anchor hole, squeeze out separately a minimum of three full strokes and discard non-uniformly mixed adhesive components until the mortar shows a consistent grey colour.

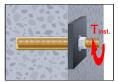
6. Starting from the bottom or back of the cleaned anchor hole, fill the hole up to approximately two-thirds with adhesive. Slowly withdraw the static mixing nozzle as the hole fills to avoid creating air pockets. If the bottom or back of the anchor hole is not reached, an appropriate extension nozzle must be used. Observe the gel-/ working times given in Table B5.



- 7. Piston plugs and mixer nozzle extensions shall be used according to Table B4 for the following applications:
 - Horizontal assembly (horizontal direction) and ground erection (vertical downwards direction): Drill bit- \emptyset d₀ \ge 18 mm and embedment depth h_{ef} > 250mm
 - Overhead assembly (vertical upwards direction): Drill bit-Ø d₀ ≥ 18 mm



8. Push the threaded rod or reinforcing bar into the anchor hole while turning slightly to ensure positive distribution of the adhesive until the embedment depth is reached.


The anchor shall be free of dirt, grease, oil or other foreign material.

9. Be sure that the anchor is fully seated at the bottom of the hole and that excess mortar is visible at the top of the hole. If these requirements are not maintained, the application has to be renewed. For overhead application the anchor rod shall be fixed (e.g. wedges).

10. Allow the adhesive to cure to the specified time prior to applying any load or torque. Do not move or load the anchor until it is fully cured (attend Table B5).

11. After full curing, the add-on part can be installed with up to the max. torque (Table B1 or B3) by using a calibrated torque wrench. It can be optional filled the annular gap between anchor and fixture with mortar. Therefor substitute the washer by the filling washer and connect the mixer reduction nozzle to the tip of the mixer. The annular gap is filled with mortar, when mortar oozes out of the washer.

Essve Injection system HY for concrete Intended Use

Annex B 5

Installation instructions (continuation)

Table B5:	Ма	aximum w	orking time and minim	num curing time	
Concrete	tem	perature	Gelling working time	Minimum curing time in dry concrete	Minimum curing time in wet concrete
0 °C	to	+ 4 °C	25 min	3,5 h	7 h
+ 5 °C	to	+ 9 °C	15 min	2 h	4 h
+ 10 °C	to	+ 14 °C	10 min	1 h	2 h
+ 15 °C	to	+ 19 °C	6 min	40 min	80 min
+ 20 °C	to	+ 29 °C	3 min	30 min	60 min
+ 30 °C	to	+ 40 °C	2 min	30 min	60 min
Cartridge	tem	oerature		+5°C to +40°C	

Essve Injection system HY for concrete	
Intended Use	Annex B 6
Curing time	

Tak	ole C1: Characteristic values fo resistance of threaded r		ensio	n res	istand	e an	d stee	el she	ar			
Size				M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30	
Cross	section area	As	[mm²]	36,6	58	84,3	157	245	353	459	561	
Chara	acteristic tension resistance, Steel failure 1)											
Steel,	Property class 4.6 and 4.8	N _{Rk,s}	[kN]	15 (13)	23 (21)	34	63	98	141	184	224	
Steel,	Property class 5.6 and 5.8	N _{Rk,s}	[kN]	18 (17)	29 (27)	42	78	122	176	230	280	
Steel,	Property class 8.8	N _{Rk,s}	[kN]	29 (27)	46 (43)	67	125	196	282	368	449	
Stainl	ess steel A2, A4 and HCR, Property class 50	N _{Rk,s}	[kN]	18	29	42	79	123	177	230	281	
Stainl	ess steel A2, A4 and HCR, Property class 70	N _{Rk,s}	[kN]	26	41	59	110	171	247	-	-	
Stainl	ess steel A4 and HCR, Property class 80	N _{Rk,s}	[kN]	29	46	67	126	196	282	-	-	
Chara	acteristic tension resistance, Partial factor 2)											
Steel,	Property class 4.6	γ _{Ms,N}	[-]				2	,0				
Steel,	Property class 4.8	γMs,N	[-]				1	,5				
Steel,	Property class 5.6	γMs,N	[-]				2	,0			-	
Steel,	Property class 5.8	γ _{Ms,N}	[-]				1	,5				
Steel,	Property class 8.8	γMs,N	[-]				1	,5				
Stainl	ess steel A2, A4 and HCR, Property class 50	γMs,N	[-]				2,	86				
	ess steel A2, A4 and HCR, Property class 70	γMs,N	[-]				1,	87				
Stainl	ess steel A4 and HCR, Property class 80	γMs,N	[-]				1	,6			-	
Chara	acteristic shear resistance, Steel failure 1)											
	Steel, Property class 4.6 and 4.8	V ⁰ _{Rk,s}	[kN]	9 (8)	14 (13)	20	38	59	85	110	135	
arm	Steel, Property class 5.6 and 5.8	V ⁰ _{Rk,s}	[kN]	9 (8)	15 (13)	21	39	61	88	115	140	
Without lever arm	Steel, Property class 8.8	V ⁰ _{Rk,s}	[kN]	15 (13)	23 (21)	34	63	98	141	184	224	
out le	Stainless steel A2, A4 and HCR, Property class 50	V ⁰ _{Rk,s}	[kN]	9	15	21	39	61	88	115	140	
Vitho	Stainless steel A2, A4 and HCR, Property class 70	V ⁰ _{Rk,s}	[kN]	13	20	30	55	86	124	-	-	
>	Stainless steel A4 and HCR, Property class 80	V ⁰ _{Rk,s}	[kN]	15	23	34	63	98	141	-	-	
	Steel, Property class 4.6 and 4.8	M ⁰ _{Rk,s}	[Nm]	15 (13)	30 (27)	52	133	260	449	666	900	
Ę	Steel, Property class 5.6 and 5.8	M ⁰ _{Rk,s}	[Nm]	19 (16)	37 (33)	65	166	324	560	833	1123	
lever arm	Steel, Property class 8.8	M ⁰ _{Rk,s}	[Nm]	30 (26)	60 (53)	105	266	519	896	1333	1797	
n lev	Stainless steel A2, A4 and HCR, Property class 50	M ⁰ _{Rk,s}	[Nm]	19	37	66	167	325	561	832	1125	
With	Stainless steel A2, A4 and HCR, Property class 70	M ⁰ _{Rk,s}	[Nm]	26	52	92	232	454	784	-	-	
	Stainless steel A4 and HCR, Property class 80	M ⁰ _{Rk,s}	[Nm]	30	59	105	266	519	896	-	-	
Chara	acteristic shear resistance, Partial factor 2)	•	'	•			•					
Steel,	Property class 4.6	γ _{Ms,V}	[-]				1,	67				
Steel,	Property class 4.8	γMs,V	[-]				1,	25				
Steel,	Property class 5.6	γMs,V	[-]	1,67								
Steel,	Property class 5.8	γMs,V	[-]				1,	25				
Steel,	Property class 8.8	γMs,V	[-]				1,	25				
Stainl	ess steel A2, A4 and HCR, Property class 50	γMs,V	[-]				2,	38				
Stainl	ess steel A2, A4 and HCR, Property class 70	γMs,V	[-]				1,	56				
Stain	ess steel A4 and HCR, Property class 80	γMs,V	[-]	1,56 1,33								

 $^{^{1)}}$ Values are only valid for the given stress area A_s . Values in brackets are valid for undersized threaded rods with smaller stress area A_s for hot-dip galvanised threaded rods according to EN ISO 10684:2004+AC:2009. $^{2)}$ in absence of national regulation

Essve Injection system HY for concrete	
Performances Characteristic values for steel tension resistance and steel shear resistance of threaded rods	Annex C 1

Anchor size threaded	smic action (pe			M 8	M 10	M 12	M 16	M 20	M24	M27	M30
Steel failure				ı						l	
Characteristic tension re	esistance	$N_{Rk,s}$	[kN]			A_s •	'	ee Table	C1)		
		N _{Rk,eq,C1}	[kN]			1	1,0 •	$N_{Rk,s}$			
Characteristic tension re Steel, strength class 8.8 Stainless Steel A4 and In Strength class ≥70	·	$N_{\text{Rk,eq,C2}}$	[kN]	NI	PA		1,0 •	$N_{\text{Rk,s}}$		Ni	PA
Partial factor		γ̃Ms,N	[-]				see Ta	ıble C1			
Combined pull-out and	d concrete failure										
Characteristic bond resi	stance in non-cracked o	concrete C20/25							1		
Temperature range I: 80°C/50°C		$ au_{ m Rk,ucr}$	[N/mm²]	17	17	16	15	14	13	13	13
Temperature range II: 120°C/72°C	Dry, wet concrete and flooded bore hole	τ _{Rk,ucr}	[N/mm²]	15	14	14	13	12	12	11	11
Temperature range III: 160°C/100°C		τ _{Rk,ucr}	[N/mm ²]	12	11	11	10	9,5	9,0	9,0	9,0
Characteristic bond resi	stance in cracked conc		FN 17		T = =				I		
Temperature range I: 80°C/50°C		$\tau_{Rk,cr} = \tau_{Rk, eq,C1}$	[N/mm ²]	7,0	7,5 PA	8,0 3,6	9,0	8,5 3,3	7,0 2,3	7,0	7,0 ⊃A
Temperature range II:	Dry, wet concrete	$\tau_{Rk, eq,C2}$ $\tau_{Rk,cr} = \tau_{Rk, eq,C1}$	[N/mm²]	6.0	6,5	7,0	7,5	7,0	6,0	6,0	6,0
120°C/72°C	and flooded bore hole	τ _{Rk, eq,C2}	[N/mm ²]		PA	3,1	3,0	2,8	2,0		0, <u>0</u> ⊃A
Temperature range III:		$\tau_{\text{Rk,cr}} = \tau_{\text{Rk, eq,C1}}$	[N/mm ²]	5,5	5,5	6,0	6,5	6,0	5,5	5,5	5,5
160°C/100°C		τ _{Rk, eq,C2}	[N/mm ²]	NI	PA	2,5	2,7	2,5	1,8	N	A
		C25/30					1,0				
Increasing factors for co	ncrete	C30/3						04			
(only static or quasi-stat		C35/45					1,0	07 08			
J c		C45/5					1,0				
		C50/60	0				1,				
Concrete cone failure		_	ı								
Non-cracked concrete		k _{ucr,N}	[-]				11	,0			
Cracked concrete		k _{cr,N}	[-]	7,7							
Edge distance		C _{cr,N}	[mm]	1,5 h _{ef}							
Axial distance		S _{cr,N}	[mm]				2 0	cr,N			
Splitting											
	h/h _{ef} ≥ 2,0						1,0	h _{ef}	<u> </u>		
Edge distance	2,0 > h/h _{ef} > 1,3	C _{cr,sp}	[mm]			<i>'</i> .	$2 \cdot h_{ef} \left(2, \frac{1}{2} \right)$	$5 - \frac{h}{h_{ef}}$			
	h/h _{ef} ≤ 1,3						2,4	h _{ef}			
Axial distance	•	S _{cr,sp}	[mm]				2 c	cr,sp			
Installation factor											
for dry and wet concrete	(MAC)	γinst	[-]		1	,2		No Pe	rformance	Assessed	(NPA)
for dry and wet concrete	(CAC)	γinst	[-]				1,	,0			
for flooded bore hole (C	AC)	γinst	[-]				1,	,4			
Essve Injection s	ystem HY for con	crete									
Performances Characteristic values	s of tension loads und	der static, quasi-s	static actio	n and					Ann	ex C 2	2

Anchor size threaded rod			M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30			
Steel failure without lever arm		'		•	•			•		<u>'</u>			
Characteristic shear resistance Steel, strength class 4.6 and 4.8	V ⁰ _{Rk,s}	[kN]	0,6 ⋅ A _s ⋅ f _{uk} (or see Table C1)										
Characteristic shear resistance Steel, strength class 5.6, 5.8 and 8.8 Stainless Steel A2, A4 and HCR, all classes	V ⁰ _{Rk,s}	[kN]	0,5 ⋅ A _s ⋅ f _{uk} (or see Table C1)										
Characteristic shear resistance (Seismic C1)	$V_{Rk,s,eq,C1}$	[kN]				0,7	′0 • V ⁰ _{Rk,s}						
Characteristic shear resistance (Seismic C2), Steel, strength class 8.8 Stainless Steel A4 and HCR, Strength class ≥70	V _{Rk,s,eq,C2}	[kN]	N	NPA 0,70 • V ⁰ _{Rk,s}									
Partial factor	γMs,V	[-]											
Ductility factor	k ₇	[-]					1,0						
Steel failure with lever arm													
	M ⁰ _{Rk,s}	[Nm]			1,2	• W _{el} • f _{uk}	(or see T	able C1)					
Characteristic bending moment	M ⁰ _{Rk,s,eq,C1}	[Nm]			No P	erforman	ce Asses	sed (NPA	١)				
	M ⁰ _{Rk,s,eq,C2}	[Nm]			No P	erforman	ce Asses	sed (NPA	١)				
Partial factor	γ _{Ms,V}	[-]				see	Table C1						
Concrete pry-out failure	•												
Factor	k ₈	[-]					2,0						
nstallation factor	γinst	[-]					1,0						
Concrete edge failure													
Effective length of fastener	I _f	[mm]			min(h _{ef} ; 1	2 · d _{nom})			min(h _{ef}	; 300mm)			
Outside diameter of fastener	d _{nom}	[mm]	8	10	12	16	20	24	27	30			
nstallation factor	γinst	[-]					1,0						
actor for annular gap	$\alpha_{\sf gap}$	[-]				0,	5 (1,0) ¹⁾						
¹⁾ Value in brackets valid for filled annular gat required	o between an	nchor and	d clearan	ce hole ir	the fixtur	e. Use of	special fi	illing wash	ner Annex A	ai E A			

Z10654.19 8.06.01-13/19

Characteristic values of shear loads under static, quasi-static action and seismic action (performance category C1+C2)

Anchor size internal th	readed anchor rods			IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M 20		
Steel failure1)				•							
Characteristic tension re Steel, strength class 5.8		N _{Rk,s}	[kN]	10	17	29	42	76	123		
Partial factor		γMs,N	[-]			1	,5				
Characteristic tension re Steel, strength class 8.8		N _{Rk,s}	[kN]	16	27	46	121	196			
Partial factor		γ _{Ms,N}	[-]			1	,5				
Characteristic tension re Stainless Steel A4 and H		N _{Rk,s}	[kN]	14	26	41	59	110	124		
Partial factor		γMs,N	[-]			1,87			2,86		
Combined pull-out and	I concrete cone failure										
Characteristic bond resis	stance in non-cracked concre	ete C20/25									
Temperature range I: 80°C/50°C		$ au_{Rk,ucr}$	[N/mm²]	17	16	15	14	13	13		
Temperature range II: 120°C/72°C	Dry, wet concrete and flooded bore hole	$ au_{Rk,ucr}$	[N/mm²]	14	14	13	12	12	11		
Temperature range III: 160°C/100°C		$ au_{Rk,ucr}$	[N/mm²]	11	11	10	9,5	9,0	9,0		
Characteristic bond resis	stance in cracked concrete C	20/25									
Temperature range I: 80°C/50°C		$ au_{Rk,cr}$	[N/mm²]	7,5	8,0	9,0	8,5	7,0	7,0		
Temperature range II: 120°C/72°C	Dry, wet concrete and flooded bore hole	$ au_{Rk,cr}$	[N/mm²]	6,5	7,0	7,5	7,0	6,0	6,0		
Temperature range III: 160°C/100°C		$ au_{Rk,cr}$	[N/mm²]	5,5	6,0	6,5	6,0	5,5	5,5		
		С	25/30			1,	02				
		С	30/37			1,	04				
Increasing factors for co	ncrete	С	35/45	1,07							
ψ_{c}		С	40/50	1,08 1,09							
		С	45/55								
		С	50/60			1,	10				
Concrete cone failure											
Non-cracked concrete		k _{ucr,N}	[-]			11	,0				
Cracked concrete		k _{cr,N}	[-]			7	,7				
Edge distance		C _{cr,N}	[mm]			1,5	h _{ef}				
Axial distance		S _{cr,N}	[mm]			2 0	cr,N				
Splitting failure											
	h/h _{ef} ≥ 2,0					1,0	h _{ef}				
Edge distance	2,0 > h/h _{ef} > 1,3	C _{cr,sp}	[mm]			$2 \cdot h_{ef} \left(2\right)$	$5 - \frac{h}{h_{ef}}$				
	h/h _{ef} ≤ 1,3					2,4	h _{ef}				
Axial distance		S _{cr,sp}	[mm]			2 0	cr,sp				
Installation factor											
for dry and wet concrete	(MAC)	γinst	[-]		1,2		No Perform	mance Asses	sed (NPA)		
for dry and wet concrete	(CAC)	γinst	[-]			1	,0				
for flooded bore hole (Ca	AC)	γinst	[-]			1	,4				
	<u> </u>				1,4 the appropriate material and property class of the inter						

Fastening screws or threaded rods (incl. nut and washer) must comply with the appropriate material and property class of the internal threaded rod. The characteristic tension resistance for steel failure of the given strength class are valid for the internal threaded rod and the fastening element.

For IG-M20 strength class 50 is valid

Essve Injection system HY for concrete	
Performances Characteristic values of tension loads under static and quasi-static action	Annex C 4

1,0

Anchor size for internal threaded and	hor rods		IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M 20			
Steel failure without lever arm ¹⁾											
Characteristic shear resistance, Steel, strength class 5.8	V ⁰ _{Rk,s}	[kN]	5	9	15	21	38	61			
Partial factor	γMs,∨	[-]				1,25					
Characteristic shear resistance, Steel, strength class 8.8	V ⁰ _{Rk,s}	[kN]	8	14	23	34	60	98			
Partial factor	γMs,V	[-]		1,25							
Characteristic shear resistance, Stainless Steel A4 and HCR, Strength class 70 ²⁾	V ⁰ _{Rk,s}	[kN]	7	13	20	30	55	40			
Partial factor	γMs,V	[-]			1,56			2,38			
Ductility factor	k ₇	[-]				1,0					
Steel failure with lever arm ¹⁾	<u>'</u>	•									
Characteristic bending moment, Steel, strength class 5.8	M ⁰ _{Rk,s}	[Nm]	8	19	37	66	167	325			
Partial factor	γMs,V	[-]				1,25					
Characteristic bending moment, Steel, strength class 8.8	M ⁰ _{Rk,s}	[Nm]	12	30	60	105	267	519			
Partial factor	γMs,V	[-]				1,25					
Characteristic bending moment, Stainless Steel A4 and HCR, Strength class 70 ²⁾	M ⁰ _{Rk,s}	[Nm]	11	26	52	92	233	456			
Partial factor	γ _{Ms,V}	[-]			1,56			2,38			
Concrete pry-out failure											
Factor	k ₈	[-]	2,0								
Installation factor	γinst	[-]				1,0					
Concrete edge failure	L	I	<u> </u>								
Effective length of fastener	l _f	[mm]		mi	n(h _{ef} ; 12 • d _n	nom)		min(h _{ef} ; 300mn			
Lifective length of lasterier				min(h _{ef} ; 12 · d _{nom})							

Fastening screws or threaded rods (incl. nut and washer) must comply with the appropriate material and property class of the internal threaded rod. The characteristic tension resistance for steel failure of the given strength class are valid for the internal threaded rod and the fastening element.

[-]

Installation factor

Essve Injection system HY for concrete	
Performances Characteristic values of shear loads under static and quasi-static action	Annex C 5

²⁾ For IG-M20 strength class 50 is valid

Anchor size reinforcing	har			ce cate	Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø3
Steel failure	Dar				<i>2</i> 8	טו ש	W 12	14 کو	ا ا ط ا	Ø 20	<i>1</i> 0 24	W 25	Ø 28	w 3
			$N_{Rk,s}$	[kN]					A _s •	f _{uk} 1)				
Characteristic tension res	sistance			[kN]						s • f _{uk} ¹⁾				
Cross section area			N _{Rk,s, eq}	[mm ²]	50	79	113	154	201	314	452	491	616	80
Partial factor			As		50	19	113	134		4 ²⁾	452	491	010	00
	aanavata fail	Luna	γMs,N	[-]					1,	+ '				
Combined pull-out and Characteristic bond resis			concrete C20/2	05										
Temperature range I:	Tance in non-	crackeu (Concrete G20/2											
80°C/50°C	D		$ au_{Rk,ucr}$	[N/mm²]	14	14	14	14	13	13	13	13	13	13
Temperature range II: 120°C/72°C	Dry, wet cor and flooded bore		$ au_{Rk,ucr}$	[N/mm²]	13	12	12	12	12	11	11	11	11	1
Temperature range III: 160°C/100°C			$ au_{Rk,ucr}$	[N/mm²]	9,5	9,5	9,5	9,0	9,0	9,0	9,0	9,0	8,5	8,
Characteristic bond resis	tance in crack	ked conc	rete C20/25											
Temperature range I: 80°C/50°C	Dry, wet cor	$\tau_{Rk,cr} = \tau_{Rk, eq}$		[N/mm ²]	5,5	5,5	6,0	6,5	6,5	6,5	6,5	7,0	7,0	7,0
Temperature range II: 120°C/72°C	and flooded bore		$\tau_{\text{Rk,cr}} = \tau_{\text{Rk, eq}}$	[N/mm²]	4,5	5,0	5,0	5,5	5,5	5,5	5,5	6,0	6,0	6,
Temperature range III: 160°C/100°C			$\tau_{Rk,cr} = \tau_{Rk,\;eq}$	[N/mm²]	4,0	4,5	4,5	5,0	5,0	5,0	5,0	5,0	5,0	5,0
	1		C25	 5/30			1	<u> </u>	1.	02	I	I		1
				0/37					1,					
Increasing factors for cor				5/45					1,					
(only static or quasi-station Ψ _c	c actions)		C40	0/50					1,	38				
Ψ¢			C45	5/55					1,	09				
			C50	0/60					1,	10				
Concrete cone failure														
Non-cracked concrete			k _{ucr,N}	[-]					11	,0				
Cracked concrete			k _{cr,N}	[-]					7	7				
Edge distance			C _{cr,N}	[mm]					1,5	h _{of}				
Axial distance									2 0					
			S _{cr,N}	[mm]						cr,N				
Splitting	l			ı	l									
	h/h _{ef} ≥ 2,0								1,0	h _{ef}				
Edge distance	2,0 > h/h _{ef} >	1,3	C _{cr,sp}	[mm]	$2 \cdot h_{ef} \left(2.5 - \frac{h}{h_{ef}} \right)$									
	h/h < 1.0		\dashv							e,j)			
	h/h _{ef} ≤ 1,3			_	2,4 h _{ef}									
Axial distance			S _{cr,sp}	[mm]					2 c	cr,sp				
Installation factor					1									
for dry and wet concrete			γinst	[-]			1,2				Performa	ince Ass	essed (N	IPA)
for dry and wet concrete for flooded bore hole (CA			γinst γinst	[-] [-]					1	0.4				
¹⁾ f _{uk} shall be taken ²⁾ in absence of nat	from the sper tional regulati	cification: on	s of reinforcing) bars										
Essve Injection sy	/stem HY 1	for con	crete										- 0 0	
Performances Characteristic values											Α	nnex	(C 6	

Anchor size reinforcing bar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Steel failure without lever arm					•					•	l	•
Chavactaviatic shape registance	V ⁰ _{Rk,s}	[kN]	0,50 • A _s • f _{uk} ¹⁾									
Characteristic shear resistance	$V_{Rk,s,eq}$	[kN]	0,35 • A _s • f _{uk} ¹⁾									
Cross section area	As	[mm²]	50	79	113	154	201	314	452	491	616	804
Partial factor	γ _{Ms,V}	[-]	1,5 ²⁾									
Ductility factor	k ₇	[-]					1,	,0				
Steel failure with lever arm												
Characteristic banding moment	M ⁰ _{Rk,s}	[Nm]					1.2 • W	∕ _{el} • f _{uk} ¹)				
Characteristic bending moment M ⁰ _{Rk,s,eq} [Nm]					N	o Perfo	mance	Assess	sed (NP	A)		
Elastic section modulus	W _{el}	[mm³]	50	98	170	269	402	785	896	1534	2155	3217
Partial factor	γ̃Ms,V	[-]					1,	5 ²⁾	•			
Concrete pry-out failure	•											
Factor	k ₈	[-]					2	,0				
Installation factor	γinst	[-]					1,	,0				
Concrete edge failure												
Effective length of fastener	I _f	[mm]	min(h _{ef} ; 12 • d _{nom}) min(h _{ef} ; 300mr								Omm)	
Outside diameter of fastener	d _{nom}	[mm]	8	10	12	14	16	20	24	25	28	32
Installation factor	γinst	[-]					1,	,0	•			
Factor for annular gap	Clap	[-]					0.5 (1,0) ³⁾				

Essve Injection system HY for concrete Annex C 7 **Performances** Characteristic values of shear loads under static, quasi-static action and seismic action (performance category C1)

in absence of national regulation ³⁾ Value in brackets valid for filled annular gab between anchor and clearance hole in the fixture. Use of special filling washer Annex A 3 is required

Anchor size threaded rod M 8 M 10 M 12 M 16 M 20 M24 M 27 M 3										
Non-cracked conc	rete C20/25 unde	er static and qua	si-statio	action						
Temperature range I:	δ _{N0} -factor	[mm/(N/mm²)]	0,031	0,032	0,034	0,037	0,039	0,042	0,044	0,046
80°C/50°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,040	0,042	0,044	0,047	0,051	0,054	0,057	0,060
Temperature range II:	δ_{N0} -factor	[mm/(N/mm²)]	0,032	0,034	0,035	0,038	0,041	0,044	0,046	0,048
120°C/72°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm²)]	0,042	0,044	0,045	0,049	0,053	0,056	0,059	0,062
Temperature range III:	δ_{N0} -factor	[mm/(N/mm ²)]	0,121	0,126	0,131	0,142	0,153	0,163	0,171	0,179
160°C/100°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm ²)]	0,124	0,129	0,135	0,146	0,157	0,168	0,176	0,184
Cracked concrete	C20/25 under sta	atic, quasi-static	and sei	smic C	1 action	1				
Temperature range I:	δ_{N0} -factor	[mm/(N/mm²)]	0,081	0,083	0,085	0,090	0,095	0,099	0,103	0,106
80°C/50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,104	0,107	0,110	0,116	0,122	0,128	0,133	0,137
Temperature range II:	δ_{N0} -factor	[mm/(N/mm²)]	0,084	0,086	0,088	0,093	0,098	0,103	0,107	0,110
120°C/72°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,108	0,111	0,114	0,121	0,127	0,133	0,138	0,143
Temperature range III:	δ_{N0} -factor	[mm/(N/mm²)]	0,312	0,321	0,330	0,349	0,367	0,385	0,399	0,412
160°C/100°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,321	0,330	0,340	0,358	0,377	0,396	0,410	0,424
	C20/25 under se	ismic C2 action								
Cracked concrete	OLO/LO dilaci oc									
Cracked concrete All temperature	$\delta_{N,eq(DLS)}$ -factor	[mm/(N/mm²)]		PA	0,120	0,100	0,100	0,120		PA

¹⁾ Calculation of the displacement

 $\begin{array}{lll} \delta_{\text{N0}} = \delta_{\text{N0}}\text{-factor} & \tau; & \delta_{\text{N,eq(DLS)}} = \delta_{\text{N,eq(DLS)}}\text{-factor} & \tau; \\ \delta_{\text{N\infty}} = \delta_{\text{N\infty}}\text{-factor} & \tau; & \delta_{\text{N,eq(ULS)}} = \delta_{\text{N,eq(ULS)}}\text{-factor} & \tau; \end{array}$

τ: action bond stress for tension

 $\delta_{N_{\infty}} = \delta_{N_{\infty}} \text{-factor } \cdot \tau;$ $\delta_{N,eq(ULS)} = \delta_{N,eq(ULS)}$ -factor $\cdot \tau$;

Table C9: Displacements under shear load¹⁾ (threaded rod)

Anchor size threaded rod			M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30
Non-cracked and cracked concrete C20/25 under static, quasi-static and seismic C1 action										
All temperature ranges	δ _{vo} -factor	[mm/kN]	0,06	0,06	0,05	0,04	0,04	0,03	0,03	0,03
	$\delta_{V_{\infty}}\text{-factor}$	[mm/kN]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05
Cracked concrete C20/25 under seismic C2 action										
All temperature ranges	$\delta_{\text{V,eq(DLS)}}\text{-factor}$	[mm/kN]	- NPA		0,27	0,13	0,09	0,06	NF	٥.۸
	$\delta_{\text{V,ep(ULS)}}\text{-factor}$	[mm/kN]			0,27	0,14	0,10	0,08	INF	- A

¹⁾ Calculation of the displacement

$$\begin{split} \delta_{V0} &= \delta_{V0}\text{-factor} &\cdot V; \\ \delta_{V\infty} &= \delta_{V\infty}\text{-factor} &\cdot V; \end{split}$$

V: action shear load

$$\begin{split} &\delta_{\text{V,eq(DLS)}} = \delta_{\text{V,eq(DLS)}}\text{-factor} & \cdot \text{V}; \\ &\delta_{\text{V,eq(ULS)}} = \delta_{\text{V,eq(ULS)}}\text{-factor} & \cdot \text{V}; \end{split}$$

Essve Injection system HY for concrete	
Performances	Annex C 8
Displacements (threaded rods)	

Table C10: Displacements under tension load ¹⁾ (rebar)												
Anchor size reinforcing bar Ø 8 Ø 10 Ø 12 Ø 14 Ø 16 Ø 20 Ø 24 Ø 25 Ø 28 Ø 32												
Non-cracked concrete C20/25 under static and quasi-static action												
Temperature range I:	δ_{N0} -factor	[mm/(N/mm²)]	0,031	0,032	0,034	0,035	0,037	0,039	0,042	0,043	0,045	0,048
80°C/50°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm²)]	0,040	0,042	0,044	0,045	0,047	0,051	0,054	0,055	0,058	0,063
Temperature range II:	δ_{N0} -factor	[mm/(N/mm²)]	0,032	0,034	0,035	0,036	0,038	0,041	0,044	0,045	0,047	0,050
120°C/72°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm²)]	0,042	0,044	0,045	0,047	0,049	0,053	0,056	0,057	0,060	0,065
Temperature range III:	δ_{N0} -factor	[mm/(N/mm²)]	0,121	0,126	0,131	0,137	0,142	0,153	0,163	0,164	0,172	0,186
160°C/100°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm²)]	0,124	0,129	0,135	0,141	0,146	0,157	0,168	0,169	0,177	0,192
Cracked concrete	C20/25 un	der static, qua	si-stati	c and s	eismic	C1 ac	tion					
Temperature range I:	δ_{N0} -factor	[mm/(N/mm²)]	0,081	0,083	0,085	0,087	0,090	0,095	0,099	0,099	0,103	0,108
80°C/50°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,104	0,107	0,110	0,113	0,116	0,122	0,128	0,128	0,133	0,141
Temperature range II:	δ_{N0} -factor	[mm/(N/mm²)]	0,084	0,086	0,088	0,090	0,093	0,098	0,103	0,103	0,107	0,113
120°C/72°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,108	0,111	0,114	0,118	0,121	0,127	0,133	0,133	0,138	0,148
Temperature range III:	δ_{N0} -factor	[mm/(N/mm²)]	0,312	0,321	0,330	0,340	0,349	0,367	0,385	0,385	0,399	0,425
160°C/100°C	$\delta_{N_\infty}\text{-factor}$	[mm/(N/mm²)]	0,321	0,330	0,340	0,349	0,358	0,377	0,396	0,396	0,410	0,449

¹⁾ Calculation of the displacement

 $\delta_{N0} = \delta_{N0}\text{-factor} \ \cdot \tau;$ τ: action bond stress for tension

 $\delta_{N_{\infty}} = \delta_{N_{\infty}} \text{-factor } \cdot \tau;$

Table C11: Displacement under shear load 1) (rebar)

Anchor size reir	Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32		
For concrete C20/25 under static, quasi-static and seismic C1 action												
All temperature	δ _{v0} -factor	[mm/kN]	0,06	0,05	0,05	0,04	0,04	0,04	0,03	0,03	0,03	0,03
ranges	δ _{V∞} -factor	[mm/kN]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05	0,04	0,04

¹⁾ Calculation of the displacement

$$\begin{split} \delta_{\text{V0}} &= \delta_{\text{V0}}\text{-factor} &\cdot \text{V}; \\ \delta_{\text{V}_{\infty}} &= \delta_{\text{V}_{\infty}}\text{-factor} &\cdot \text{V}; \end{split}$$
V: action shear load

Essve Injection system HY for concrete	
Performances	Annex C 9
Displacements (rebar)	

8.06.01-13/19 Z10654.19

Table C12: Displacements under tension load ¹⁾ (Internal threaded rod)									
Anchor size Internal threaded rod IG-M 6 IG-M 8 IG-M 10 IG-M 12 IG-M 16 IG-M									
Non-cracked conc	rete C20/25 un	der static and quas	i-static ac	tion	•				
Temperature range I:	δ _{N0} -factor	[mm/(N/mm²)]	0,032	0,034	0,037	0,039	0,042	0,046	
80°C/50°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm²)]	0,042	0,044	0,047	0,051	0,054	0,060	
Temperature range II: 120°C/72°C	δ_{N0} -factor	[mm/(N/mm²)]	0,034	0,035	0,038	0,041	0,044	0,048	
	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm²)]	0,044	0,045	0,049	0,053	0,056	0,062	
Temperature range III:	δ_{N0} -factor	[mm/(N/mm²)]	0,126	0,131	0,142	0,153	0,163	0,179	
160°C/100°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,129	0,135	0,146	0,157	0,168	0,184	
Cracked concrete	C20/25 under s	static and quasi-sta	tic action						
Temperature range I:	δ_{N0} -factor	[mm/(N/mm²)]	0,083	0,085	0,090	0,095	0,099	0,106	
80°C/50°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm²)]	0,170	0,110	0,116	0,122	0,128	0,137	
Temperature range II:	δ_{N0} -factor	[mm/(N/mm²)]	0,086	0,088	0,093	0,098	0,103	0,110	
120°C/72°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,111	0,114	0,121	0,127	0,133	0,143	
Temperature range III:	δ_{N0} -factor	[mm/(N/mm²)]	0,321	0,330	0,349	0,367	0,385	0,412	
160°C/100°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm²)]	0,330	0,340	0,358	0,377	0,396	0,424	

¹⁾ Calculation of the displacement

 $\delta_{\text{N0}} = \delta_{\text{N0}}\text{-factor} \ \cdot \tau;$ $\delta_{N_{\infty}} = \delta_{N_{\infty}}\text{-factor }\cdot \tau;$ τ : action bond stress for tension

Table C13: Displacements under shear load¹⁾ (Internal threaded rod)

Anchor size Internal threaded rod			IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M 20
Non-cracked and cracked concrete C20/25 under static and quasi-static action								
All temperature	δ _{v0} -factor	[mm/kN]	0,07	0,06	0,06	0,05	0,04	0,04
ranges	$\delta_{V\infty}$ -factor	[mm/kN]	0,10	0,09	0,08	0,08	0,06	0,06

¹⁾ Calculation of the displacement

$$\begin{split} &\delta_{V0} = \delta_{V0}\text{-factor} & \cdot V; \\ &\delta_{V\infty} = \delta_{V\infty}\text{-factor} & \cdot V; \end{split}$$

V: action shear load

Essve Injection system HY for concrete	
Performances Displacements (Internal threaded anchor rod)	Annex C 10